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Many factors motivate consideration of B-splines as basis functions for solving
partial differential equations. These are arbitrary orders of accuracy and high re-
solving powers similar to those of compact schemes. Furthermore, if one uses a
Galerkin scheme one gets, in addition to conservation of the discretized quantities,
conservation of quadratic invariants such as energy. This work develops another
property, namely, the ability to treat semi-structured embedded or zonal meshes for
two-dimensional geometries. This can drastically reduce the number of grid points
in many applications. An algorithm is presented for constructing a global spline ba-
sis that automatically hasd− 1 continuous derivatives at mesh-block boundaries as
everywhere else (hered is the polynomial degree). The basis functions are simply suit-
able products of one-dimensional B-splines. Both integer and noninteger refinement
ratios are allowed across mesh blocks. Finally, test cases for linear scalar equations
such as the Poisson and advection equation are presented.c© 1998 Academic Press

1. INTRODUCTION

When gradients become large in a certain direction, structured meshes allow one to
cluster grid lines. This is inefficient if the regions of high gradient are local in the other
directions. For instance in a turbulent boundary layer, streamwise gradients are large close
to the wall but small away from the wall. Considerable savings can be obtained by using the
semi-structured approach of embedded meshes for a domain divided into blocks or zones
within each of which the mesh is regular.

In a previous paper, Kravchenkoet al. [1] developed a technique for achieving “one-
dimensional” mesh embedding for B-splines. “One-dimensional” refers to the fact that
mesh zones were slices which spanned the domain in the other two directions. In particular,
Fourier expansions were used in the directions parallel to the wall and B-splines were used
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in the wall-normal direction. The present work develops a technique for two-dimensional
embedding with B-splines. Specifically, an algorithm is provided for generating a spline
basis, where the domain is partitioned into arbitrary rectangles. The basis automatically
has the same high degree of continuity (Cd−1, whered is the polynomial degree) at zonal
boundaries as everywhere else. Refinement ratios between mesh blocks are not restricted
to being integer. The basis may then be used to form differential operators using a Galerkin
or collocation scheme.

Let us briefly sketch where the B-spline technique lies in relation to other schemes.

(i) There is a strong similarity in the 1D periodic case between Pad´e or compact schemes
(Lele [2]) and schemes resulting from B-splines. Swartz and Wendroff [3] have shown that
both have higher resolving power than an explicit central difference scheme of the same
order. We expect that resolving power will be good even in the nonperiodic case and with
embedding. It should be noted that for the same matrix bandwidth, Pad´e schemes have a
little better resolving power than Galerkin B-spline schemes (see Table I in Ref. [3]).

(ii) The desired global order of accuracy is arbitrary (an input parameter).
(iii) For nonperiodic problems, compact schemes require formulation of separate bound-

ary schemes which are not required for B-splines. However, compact schemes employ only
a series of 1D matrix inversions and are therefore cheaper.

(iv) When a Galerkin scheme is applied to a conservation equation, the corresponding
quantities (such as mass and momentum) are conserved in any subregion of the domain
where unity is exactly representable (which is the case for splines). By “conserved” we
mean that the rate of change of the total reduces to consistent boundary fluxes. For finite-
difference or finite volume methods “simultaneous achievement of both conservation (across
mesh blocks) and accuracy is very difficult and even impossible in most cases” according
to Kallinderis [5]. In many such methods the order of accuracy drops at mesh interfaces.
Such schemes often update each zone separately and interpolate zone boundary information
in a separate step. This requires down-wind differencing at some interfaces which can be
destabilizing. Such procedures are not needed here but the price to pay is matrix inversions.
A further advantage of the Galerkin scheme is conservation of quadratic invariants (such as
kinetic energy for incompressible flow in the inviscid limit). This protects the scheme against
nonlinear instability (“aliasing”). It also makes the scheme more robust for it produces a
sure indicator of lack of resolution, namely, energy accumulation at small scales. For finite-
differences, even for regular meshes, conservation of energy has been achieved only for the
second-order staggered “pressure” scheme.

(v) In a finite element method, the solution within each element is represented in terms
of nodal values located within or on the boundary of the element. This representation is
constructed in such a way that at an element edge the solution depends only on the nodal
values along the edge. ThusC0 continuity across elements is obtained along the entire edge.
With a B-spline basis, while nodal values are never explicitly employed in the representation,
the dependence of the representation on nodal values is global.Cd−1 continuity is obtained
across elements (by “element” we mean the region of support of each piece of the piecewise
polynomial). The resolving power of B-splines is a direct result of this higher continuity.
In Hermite finite elements, continuity of higher derivatives is obtained at the cost of having
nodal derivatives as additional degrees of freedom. For instance in 1D, using nodal values
and derivatives as degrees of freedom producesC1 cubics. By contrast, B-splines give a
more refined space, namelyC2 cubics with the number of degrees of freedom still equal to
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the number of intervals (plus 3). Matrix structure and bandwidth for a Galerkin formulation
are also quite different. CubicC1 (Hermite) finite elements have between four and six
nonzero entries per row, while cubic B-splines produce a heptadiagonal matrix with about
half as many rows. What is gained by finite elements is geometric flexibility. In the present
method, only a single mapping of the domain from cartesian coordinates is permitted.

(vi) The h-p finite element method (e.g., Devlooet al. [4]) is specifically designed to
treat embedded meshes. The modifier “h” refers to local spatial refinement: each side of an
element can have more than one element on the other side, thus leading to “hanging nodes,”
i.e. nodes which are not shared by all their neighboring elements. To maintainC0 continuity
across elements in this arrangement requires that the solution value at the hanging nodes be
constrained. The modifier “p” refers to the fact that an element may neighbor an element
having different polynomial order. AgainC0 continuity across elements requires constraints
on some nodal values. The present method achieves only theh-functionality but with higher
continuity.

In summary, it may be said that the B-spline method lies somewhere between finite ele-
ment and spectral methods in both resolving power and geometric and gridding flexibility.

The outline of this paper is as follows. Section 2 provides a very brief background on
one-dimensional B-splines. Section 3 presents an algorithm for choosing an appropriate set
of two-dimensional functions and Section 4 presents test cases for linear scalar operators.

2. BACKGROUND ON ONE-DIMENSIONAL B-SPLINES

For the purposes of this work, a one-dimensional spline is defined to be a polynomial of
degreed in each interval withd− 1 continuous derivatives across interval boundaries. The
boundaries of the intervals are called knot points: thedth derivative of the spline has a jump
at the knot points in the interior of the domain.

A B-splineis simply defined as a spline which has support over the minimum number
of intervals and which is normalized. By equating the number of known continuity and
normalization conditions to the number of unknown coefficients one finds that the number
of minimum intervals isd+ 1. This is enough information to determine the B-spline which
has support in the set of intervals. Quadratic B-splines have support over three intervals
and Fig. 1 shows the set of quadratic B-splines for the knot points indicated by×. Near
the boundary, the number of continuity conditions available drops and so does the number
of intervals of support. To calculate the B-splines one does not have to actually solve any

FIG. 1. Plot of one-dimensional quadratic B-splines on the set of knot points indicated by×. All functions,
except those near the boundary, have support over three intervals. Note: Line types are re-used for different
functions.
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continuity conditions. Rather, one uses a recurrence relation given in de Boor [6, Chap. 10]
to build up the functions from piecewise constant functions.

Above, the B-splines were merely defined as splines with minimum support. What
makes them useful for solving partial differential equations is the result, due to Curry and
Schoenberg (see de Boor [6]), that they form abasisfor spline functions with the given knots.

3. FUNCTION SELECTION ALGORITHM FOR 2D MESH EMBEDDING

3.1. Mesh Definition

It is assumed that the computational domain is mapped to a rectangle inξ, η. The case
of a more general polygon with right angles (such as a backward-facing step) can perhaps
be treated along very similar lines, but this is not presently allowed. For convenience and
without loss of generality, the user is required to specify the mesh in terms of sets of points
which are swept across certain intervals in order to produce mesh lines. For instance in
Fig. 2, the mesh lines are indicated by the solid lines. The horizontal lines of the mesh can
be generated by sweeping the three sets ofη points indicated by• across theξ intervals
indicated. Similarly, the vertical lines can be generated by vertically sweeping the two sets
of ξ points indicated by×. Just as in the 1D case, where the interval boundaries are knot
points, we want mesh lines in the 2D case to represent knot lines, i.e., the lines normal to
which the selected functions (of degreed, say) have a jump in thedth normal derivative.
Hence, we regard each set of points used to sweep out the mesh as being a knot set with an
associated set of one-dimensional functions. The firstξ knot set in Fig. 2 is the same as the
knot set shown in Fig. 1 and has the same associated functions.

FIG. 2. Sketch to illustrate the function selection algorithm. All functions are quadratic B-splines and span
three knot intervals.
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If everyξ knot set either contains, or is contained, by every otherξ knot set (and similarly
for η), we will say that the mesh is hierarchical. Figure 2 shows a nonhierarchical mesh and
the same algorithm applies for both types of meshes.

It is assumed that the mesh thus specified by sweeping points produces closed cells.
Suppose that a vertically swept pointξ1 “hangs” atη1, i.e. fails to continue into the next
sweep. Then to ensure a closed cell,η1 should be a knot point in theη knot set which sweeps
overξ1, or begins or ends a sweep there.

As a preliminary, the algorithm breaks up the mesh into a set of blocks on each of which the
mesh is regular. For instance, Fig. 2 has five blocks. This decomposition is not always unique
and should be performed to minimize block boundaries. In the present implementation, a
provisional set of blocks is first created on the basis of the sweep intervals. Where possible,
blocks are then merged with neighbors to create larger blocks.

Below, an algorithm with variants is presented for selecting functions. The first one, the
intersection procedure, does not allow functions that create extra knot lines not defined by the
mesh. For noninteger refinement ratios, this restriction would produce coarse functions along
block boundaries and therefore less constrained procedures are described in Section 3.3.

3.2. Intersection Procedure

We want to choose a set of functionsBn(ξ, η),n= 1, 2, . . . , N that can represent piece-
wise polynomials of degreed having knot lines that coincide with the mesh. We have no
formal proof that the procedure provides a complete basis. EachBn(ξ, η) is constructed as
a product of one-dimensional B-splines,f (ξ)g(η), say. One may consider implementing a
brute-force algorithm in which all possible pairs ofξ andη functions defined by the swept
knot sets are tried and those that create undersired knot lines are rejected. This procedure
would not only be too costly, but it does not allow the choice of functions not defined by
the given knot sets which, we shall see, come into play for nonhierarchical meshes.

Two-dimensional functions confined to each block are chosena priori; these are simply
the tensor product B-splines for a regular mesh. It remains to select functions that penetrate
multiple blocks. They are referred to as “spilling functions.” The procedure is to consider
every function, sayf (ξ), on each sweep of theξ knot sets and to find suitable functions of
η as multipliers. The same procedure is repeated for everyη function on each sweep of the
η knot sets. Constant reference is made to Fig. 2.

(1) First, one obtains theη knot set from which multipliers forf (ξ) will be chosen. The
ξ -support of f (ξ) will penetrate a certain range of sweep intervals of theη knot sets. For
instance the functionA penetrates sweeps 1 and 2 of theη knot sets. To prevent creation
of new knot lines, we must choose multipliers from theintersectionof the η knot sets
associated with the range of sweeps. We will call this thecompatible knot setof f (ξ). For
instance in Fig. 2, the functionB (from the firstη knot set) is not a compatible multiplier for
A because the resulting product has additional knot lines indicated by the dashes. However,
the functionC (from the intersection ofη knot sets 1 and 2)is a compatible multiplier.
Note that if the knot sets involved in the intersection operation are hierarchical (i.e., each
set either contains, or is contained in, another) then the intersection operation just chooses
the coarsest of the sets. In general, however, the compatible knot set could turn out to be
one that was not used in the mesh definition.

At each zonal boundary there is a strip within the region of fine resolution into which the
coarse functions penetrate. The width of this strip isd intervals normal to the boundary.
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For instance,A is the left-most function inξ knot set number 1 that will multiply coarse
functions inη. Thus functions (such asA×C) that have they knot spacing of the coarse
block penetrate twoξ intervals of the fine block. In general the number of intervals of
penetration is the polynomial degree,d.

(2) Only those functions in the compatible knot set that have support in the sweep interval
of the knot set off (ξ) are relevant; we refer to these ascompatible functions.

(3) Next, we further limit the compatible functions in order to prevent block-confined
functions, which have been chosena priori, from being selected. The support off (ξ)× its
η sweep interval is either confined to a block or it is not.

(a) If it is confined to a block then only those compatible functions that cross the block
boundaries inη are allowed.

(b) If it is not confined to a block (as is the case for functionA), then all compatible
functions are allowed.

(4) In order to prevent the selection of 2D functions with additional knot lines, it is
necessary that the compatibility bemutual. For instanceD is a compatible multiplier ofA,
but A is not a compatible multiplier ofD. This is because functionD penetrates sweeps 1
and 2 of theξ knot sets but the knots of functionA do not belong to their intersection. In
particular, the following test is applied: do the knots off (ξ) belong to the compatible knot
set ofg(η)?

The mutual compatibility test needs to be relaxed at nonhierarchical corners. Consider,
for instance, the region nearO where two fine regions meet at a corner. The only functions
that have support at the cornerO that do not result in additional knot lines are functions
such asE× D, neither of which belongs to any knot set used in the definition of the mesh.
Since only functions on the knot sets used in the mesh definition seek suitable multipliers,
such a product would never be chosen. This is overcome by either of two modifications,
denoted as M1 and M2. If the mutual compatibility test fails for a prospective 2D function
containing a block cornerandtheg(η) does not belong to any of theη knot sets penetrated
by the support off (ξ) then: (M1)g(η) is chosen, resulting in the creation of new knot
lines; or (M2) The product ofg(η) and all the functions on the compatible knot set ofg(η)
that have support at the corner are chosen. In this case no new knot lines are created in the
context of the intersection procedure. The unmodified procedure is denoted as M0.

(5) Finally, a check is made that a 2D function selected is unique.

3.3. Less Constrained Procedures

It may be desirable to change resolution gradually, in a noninteger fashion, as is the case
in Fig. 2 between the left and right halves of the mesh. If compatible multipliers for function
F were chosen according to the intersection procedure, the very coarse functionG would
result (its knots are indicated bys). To avoid this, one can dispense with the requirement
that no new knot lines be created. Instead of using the intersection operation one can use
any other operation which provides sufficiently good resolution along the block boundary.
One simple way of doing this is to use the “densest,” instead of the intersection operation,
to determine the compatible knot set. In other words choose the set with the most knots. A
more logical choice is to assemble the compatible knot set by taking, within each sweep,
the set which has the most points within that sweep. For example, the compatible knot set
for function F would be formed by taking points from the rightmostη knot set for the first
vertical sweep interval and the middleη knot set within the second vertical sweep interval.
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We refer to this as the “densest by sweep (DS)” operation. In this case a function such asH
would be a valid multiplier forF and their product would create the additional knot lines
indicated by dots. The functionH is also mutually compatible withF because the knots
of F belong to the (single)ξ knot set penetrated byH . The mutual compatibility test was
needed in the intersection algorithm to prevent additional knot lines. Here it is necessary
to prevent the selection of multiple types of products in the same region. For instance,
functionC would seek multipliers at some point. One sees thatF would not be a mutually
compatible function because the knots ofC do not belong to the DS of the vertical knot sets
on whichF has support. This is rightly so becauseF × H is the type of product we have
selected for this region.

In the tests that follow the algorithm used will be denoted by a prefix: I (intersection),
D (densest), or DS (densest on a sweep by sweep basis). This will be followed by a suffix
(M0, M1, or M2) to denote the modification to the mutual compatibility test.

Algorithm summary. Perhaps the following summary will aid the reader in holding the
algorithm firmly in mind. For everyξ function on the knot sets, whoseξ support× η sweep
interval is confined to a block, pick as multipliers only those mutually compatibleη functions
which cross the block boundaries inη, since the rest produce 2D functions confined to the
block and have been chosena priori. For aξ function, whoseξ support× η sweep interval
is not confined to a block, choose as multipliersall mutually compatible functions. Repeat
the procedure for allη functions defined by the given knot sets. If required, relax the test of
mutual compatibility according to M1 or M2.

3.4. Matrix Structure of Linear Operators

In a Galerkin (weighted residual) method, linear operators (such as the Laplacian and
advection operator in the present examples) give rise to matrices of the general form

(L1Bm,L2Bn) ≡
∫
L1BmL2Bn dx dy, m, n = 1, 2, . . . , N, (1)

whereL1 andL2 represent linear differential operators. Similarly, operators with a quadratic
nonlinearity give rise to integrals of triple products. All matrices need be computed once.
Since differentiation does not alter the support region of a function, all linear operators
produce matrices with the same structure that depends on which pairs of functions overlap.
The template for this structure is constructed once. Pairs of functions confined to each
block overlap in a simple way and produce the structured part of the matrix; it has(d+ 1)2

diagonals for a symmetric operator and(2d+ 1)2 diagonals for a nonsymmetric operator.
Spilling and block-confined functions that overlap produce scattered matrix elements, as do
two overlapping spilling functions. With the template in hand, matrix elements are computed
using Gauss quadrature with enough points to ensure exact integrals.

The collocation approach can also be used; the peak location of each function is a
convenient choice for the collocation points. The matrix for fitting a spline to data given at
the collocation points has(d+ 1)2 bands for the structured part of the matrix.

Matrix equations are solved using the conjugate gradient routines from the SLAP library,
which requires that the left-hand-side matrix multiply a vector in each iteration. All the
tests reported here used the matrix diagonal as the preconditioner. Incomplete Cholesky
decomposition was also tried as a preconditioner. It required a factor of two to three fewer
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iterations, but the overall CPU time for matrix inversion was a little higher, due to the cost
of applying the preconditioner at each iteration (even if we leave out the cost of the initial
factorization).

It is important to make the matrix by vector multiplication efficient, since it is applied
in each iteration. The multiplication of each diagonal can be performed in a vector loop.
The template for storing the scattered elements ensures that their multiplication can be
accomplished in a certain number of vector multiplies. This number is the maximum number
of scattered elements in a row. The template is rearranged to avoid the most obvious bank
conflict, namely that of accessing the same element of the multiplying or resultant vector
within a certain number of CPU clocks.

4. TEST CASES

First consider scalar advection at 45◦ to thex-axis,

u,t + cu,x′ = u,t + c(u,x+ u,y) = 0 on the unit square, (2)

wherex′ is a coordinate at 45◦ to thex-axis. The initial profile is a Gaussian pulse,

u(x, y, t = 0) = e−x′2/σ 2
, (3)

withσ = 0.15. The advection speed,c, is set to unity. The boundary condition imposed onu,t
at the in-flow (left and bottom) boundaries corresponds to uniform propagation of a Gaussian
pulse. Henceforth, we use as weight functions those B-splines, sayBm(x, y),m= 1, 2, . . . ,
No, which vanish where boundary conditions are applied and represent the solution as

u(x, y, t) =
No∑

n=1

an(t)Bn(x, y)+
N∑

n=No+1

an(t)Bn(x, y), (4)

where B-splines having nonzero value at the boundary have been isolated in the second
term. Denoting the inner product as(·, ·), the weak formulation reads

No∑
n=1

(Bm, Bn)ȧn = −c
N∑

n=1

(Bm, Bn,x + Bn,y)an −
N∑

n=No+1

(Bm, Bn)ȧn, m= 1, 2, . . . , No,

(5)

where the coefficients,̇an, in the last term are known from projecting the boundary spec-
ification of u,t . In order to make time integration errors smaller than spatial discretiza-
tion errors, this equation is advanced with a sixth-order Runge–Kutta scheme with cfl≡
c1t/1xmin= 0.5. Figure 3a shows contours of local error obtained using cubic splines and
algorithm DM0 for a noninteger refinement ratio of 5/4. At the instant shown, the pulse
has propagated four half-widths and the peak of the pulse lies on the diagonal of the fine
block.

The error is perfectly symmetric about the 45◦ line, smooth, without any peculiarities
at the mesh interface, and attains a maximum of 0.65%, even on the rather coarse mesh.
Figure 3b is the result of a convergence test using quadratic and cubic splines. Aside from a
little curvature and flattening for the cubic case, the approximation–theoretic convergence
rate,d+ 1 (e.g., see Strang [7, p. 62]) is obtained.
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FIG. 3. (a) Local error for the advection equation after the wave has propagated a distance of 0.6. Contour
min, max, and inc,=(−0.0065, 0.0060, 0.0005). The error is sampled on a 150× 150 grid. (b) Convergence test
for the advection equation. Same instant, mesh type, and sample points as (a): ———, maximum error (L∞ norm);
– – – –, average of absolute error (L1 norm); ········, reference lines with slope of−3 and−4; n, for quadratic
splines;j, for cubic splines.
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Next consider the Poisson equation for the streamfunction given the vorticity,ω:

∇2ψ(x, y) = −ω(x, y) on the unit squareÄ with ψ = g(s) on ∂Ä. (6)

In order to eliminate unknown boundary terms in the weak formulation and to impose the
Dirichlet boundary condition strongly we again use as weight functions all the B-splines
which vanish at the boundary. The weak formulation reads

No∑
n=1

cn(∇Bm,∇Bn) = (Bm, ω)−
N∑

n=No+1

cn(∇Bm,∇Bn), m= 1, 2, . . . , No. (7)

The test vorticity field in the present example consists of three axisymmetric Gaussians
of alternating sign and graded intensity superposed with images to make the left and bottom
boundaries impermeable walls:

ω(x, y) =
3∑

p=1

1∑
i=−1

1∑
j=−1

i j 0p

πσ 2
p

exp
(−r 2

pi j

/
σ 2

p

)
,

(8)
r 2

pi j = (x − i xp)
2+ (y− j yp)

2.

The outer sum in (7) is over the three vortices and the two inner sums are over the four
images of each vortex. The strengths of the vortices were chosen to be01= 1,02=−9, and
03= 12. The locations and core sizes were set tox1= y1= σ1= 0.5, x2= y2= σ2= 0.125,
andx3= y3= σ3= 0.0625. The exact streamfunction resulting from each vortex is easily
obtained and the sum is

ψ(x, y) =
3∑

p=1

1∑
i=−1

1∑
j=−1

− i j 0p

4π

[
logr 2

pi j − Ei
(−r 2

pi j

/
σ 2

p

)]
, (9)

where Ei is the exponential integral. In the numerical solution the conditionψ = 0 is
imposed on the left and bottom walls and the exact solution is imposed on the top and right
boundaries.

Figure 4a shows that even for the very coarse mesh, the agreement between the exact and
numerical solutions is excellent (the intersection algorithm (IM0) with quadratic B-splines
was used). For comparison, the solution was also obtained for a uniform mesh having
everywhere the mesh spacing of the finest block of the embedded mesh. The maximum
error occurs in the intense vortex near the corner and it has virtually the same value for
the two meshes (compareh and + in Fig. 4b; the error was sampled on a 512× 512 set of
points for both meshes).

The rest of the curves in Fig. 4b show that when the error is evaluated at the “mesh-
points” (i.e., the intersection points of the knot lines), two of the norms converge at fourth
order which is one order higher than the approximation theoretic result. This phenomenon
is called super-convergence and deserves a brief comment. Thom´ee [8] showed that in one-
dimension and with periodic boundary conditions, the Galerkin B-spline method exhibits
super-convergence at the knot points. In particular for the heat equation the convergence
rate is 2d while for the advection equation it is 2d+ 2. Exact time integration is assumed
in both cases. The various numerical tests we performed indicated that super-convergence
was practically nonexistent for two dimensions with nonperiodic boundary conditions;
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FIG. 4. (a) Solution to the three-vortex Poisson equation sampled on a 100× 100 grid. The actual mesh is
shown. Computed solution: – – – –, negativecontours; ———, positive contours. Exact solution:········, negative
contours; — - —, positive contours. (b) Convergence for the three-vortex Poisson equation test. Error sampled at
512× 512 points: — - — h, maximum error for the embedded mesh; — - —+, maximum error for a uniform mesh
having the finest spacing of the embedded mesh. Error sampled at all the “mesh-points”: ———n, maximum
error (L∞ norm); —·— s, r.m.s. error (L2 norm); – – – –d, average of absolute error (L1 norm);········, reference
lines with slopes of−3 and−4.
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FIG. 5. (a) Computational cost for the Poisson test. ———s, CPU seconds for matrix inversion; – – – –h,
CPU seconds for setup of Laplacian matrix;········ n, CPU seconds for setup of right-hand-side vector; —·—
e, number of conjugate gradient iterations (Nit ). (b) Number of conjugate gradient iterations for different mesh
types: —·— n, uniform mesh; ———h, embedded mesh; – – – –s, stretched nonembedded mesh.

Fig. 4b represents, indeed, an exceptional case. For the advection equation there was no
super-convergence even on a uniform mesh. For the Poisson equation on a uniform mesh,
the odd-degree splines considered did not exhibit super-convergence, while among the even-
degree splines only the quadratic functions displayed a rate consistent with Thom´ee’s result.
Quartics converged at sixth order, compared with fifth order for approximation theory and
the eighth order of Thom´ee’s result.

Figure 5 shows the computational cost for the Poisson test on a CRAY C90 single
processor. The cases are the same as those shown in the convergence plot (Fig. 4b). The
convergence criterion supplied to the conjugate gradient routine was that the L-2 norm of the
residual be 10−10 times the L-2 norm of the right-hand side. In a time-dependent problem,
the setup cost of the matrix, which is an order of magnitude larger than the cost of matrix
inversion, would be amortized over the number of steps. For the left-most data point, 80%
of the cost of computing the Laplacian matrix comes from the unstructured elements, even
though they constitute only 7% of the matrix. This is because their 1D integrals involve
products of B-splines from different knot sets and these integrals are computed as they
arise. For the structured elements, however, each 1D integral involves B-splines from the
same knot set, and B-spline values at quadrature points as well as 1D integrals can be
precomputed for each knot set.

In response to a referee, we determined whether there is a degradation in the convergence
of the conjugate gradient method for an embedded mesh. Three types of meshes were
compared: the embedded mesh of Fig. 4, a regular but nonuniform mesh obtained by
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eliminating the embedding (resulting in the mesh shown in Fig. 6b), and, finally, a uniform
mesh. Each mesh was successively refined and the number of iterations were plotted versus
the number of degrees of freedom (Ndof). The result is shown in Fig. 5b. The number of
iterations rises asAN1/2

dof and A is largest for the nonuniform regular mesh, smallest for
the uniform mesh, with the embedded mesh lying between the two. CPU time was also
investigated and a mechanism for degradation on a vector machine was uncovered for
small meshes. AsNdof was decreased, the cost of multiplying each nonzero matrix element
increases for each mesh due to shortening vector-loop lengths. The embedded mesh has the
shortest loops and for a rather small mesh withNdof= 200, there is a factor of 2 degradation
over the uniform mesh.

In the advection test the local error had no peculiarities near the mesh interface. The same
is not true for the Poisson test. Figure 6a shows that the error reaches a maximum in the
region of the intense vortex nearest the corner and diminishes away from it, as one would
expect. However, it increases again in the form of positive and negative layers along the
interface. A regular mesh (without embedding; see Fig. 6b) but with the same change in
spacingnormal to the interface as the embedded mesh gives similar features in the error
but the peak in the error at the mesh interface is a little smaller (70% of the value in the
embedded mesh). In Fig. 6c, normal spacing is kept uniform whiletangentialresolution
changes. The pattern of the error near the interface resembles swords pointing normal to
the interface with the positive peak near the interface being half the value in the original
embedded mesh. Figure 6d shows that near the interface of interest, the two errors very
nearly add to give the error in the original embedded mesh.

The final test is one of robustness: we consider a problem for which a uniform mesh is
optimal and study how much the resolving power degrades when the mesh is dislocated
(as shown in Fig. 7b) and the embedding procedure is applied. A uniform mesh is optimal
for problems in which the solution oscillates uniformly everywhere in the domain. The
eigenvalue problem for the Laplacian operator is one such problem:

∇2ψ = λψ on a rectangle of unit width and heighth with ∂ψ/∂n = 0 on the boundary.

(10)

The von Neumann boundary condition was chosen because it makes the boundary term of
the weak formulation vanish. The square,h2, of the height of the domain is chosen to be
irrational(h2=√2) to avoid degenerate eigenvalues. The exact eigensolutions are

λm,n = −π2(m2+ (n/h)2), ψm,n = cos(mπx) cos(nπy), (11)

The extent to which a numerical method is able reproduce the exact eigenvalues and eigen-
functions is a test of its resolving power for the Laplace operator (with the given boundary
conditions) across all scales. We compare performance on a uniform 10× 10 interval mesh
(without embedding) with performance on the dislocated mesh shown in Fig. 7b.

To compute the error for each member in the set of numerical eigensolutions one needs
to associate it with an exact eigensolution. Any procedure one uses to pair a numerical
eigensolution with an exact one necessarily becomes arbitrary for the highly inaccurate
eigensolutions. The procedure we used was to evaluate each numerical eigenfunction on a
50× 50 grid, normalize it to have a value of unity at the origin, and pair it with the closest
(in the discrete L-2 sense) unpaired exact eigensolution. The pairing proceeded in order of
increasing numerical eigenvalue. To assess resolving power, the number of eigenvalues and
eigenvectors which satisfy a given error tolerance for the two meshes are shown in Table I.
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FIG. 6. Local error on three different meshes for the three-vortex Poisson equation test. In all plots, contour
min, max, inc= (−0.00475, 0.00425, 0.00050). This makes the lowest contour levels±0.00025, rather than zero:
———, positive values;········, negative values. The error is evaluated on a 300× 300 grid. (a) Mesh embedding
with abrupt changes in spacing normal and tangential to the mesh interfaces. (b) A nonembedded but nonuniform
mesh with abrupt changes in normal resolution only. (c) Mesh embedding with an abrupt change of spacing in the
tangential direction in the region of interest. (d) The result of adding the error fields shown in (b) and (c).
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FIG. 6. Continued

For a tolerance of 0.01, the number of “good” eigensolutions is almost identical for the two
meshes. The overhead of extra functions at the dislocationincreases the number of degrees
of freedom from 144 to 151. Therefore the ratio of good eigenvectors to the total number
of degrees of freedom degrades by 5% for a tolerance of 0.01. For a tolerance of 0.10 this
ratio degrades by 14%. Figure 7 plots the error in an eigenfunction whoseL2 error degrades



     

FIG. 7. Local error for the eigenfunction form= n= 6: ———, positive values;········, negative values. In
both plots contour min, max, inc= (−0.19, 0.17, 0.04) which makes the lowest contour levels−0.03 (dashed)
and 0.01 (solid), rather than zero. For plotting purposes, the error was evaluated on a 50× 50 grid: (a) uniform
mesh; (b) dislocated mesh.
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TABLE I

Number of Eigenvalues (nλ) and Eigenfunctions (nv) with Error

Less Than the Specified Tolerances

Mesh type 10% error tolerance 1% error tolerance No. of degrees of freedom

Uniform nλ= 90 nv = 63 nλ= 30 nv = 22 144
Dislocated nλ= 93 nv = 57 nλ= 29 nv = 22 151

Note. Relative error is used for eigenvalues;L2 error is used for eigenfunctions.

by 3% with embedding. This eigenfunction has three wavelengths over the domain in each
direction. Aside from the broken symmetry, the error along the dislocation is very similar
in the two meshes.

5. CONCLUDING REMARKS

A technique has been developed for achieving two-dimensional mesh embedding with
B-splines as basis functions. The results of test cases are encouraging and work is under way
to apply the technique to the incompressible Navier–Stokes equations for three-dimensional
flow in two-dimensional curvilinear coordinates.

Since the cost of selecting functions and computing various matrices is incurred every
time the mesh changes, the present method would not be efficient for applications requir-
ing frequent adaptive remeshing. The application we have in mind, namely statistically
stationary turbulence, should not require frequent remeshing. For continuous adaptation,
an alternate approach to constructing the basis that allows greater flexibility in “editing”
the degrees of freedom and matrices should be pursued. One can look to spline wavelets
(e.g., Chui and Wang [9]), but the usually imposed requirement of orthogonality results in
wavelets of wide support. Szeliski and Shum [10, p. 1203] state that they have constructed
a nonorthogonal form of spline wavelet with smaller support but no explicit formulas are
provided. Forsey and Bartels [11], in the context of surface modeling, exploit the fact that a
coarse B-spline can be rewritten as a sum of finer B-splines and use this for local refinement.
Gornowicz [12], in the context of motion analysis of images (where a certain functional
has to be minimized) writes the solution as a summation over resolution levels, keeping
all B-splines at each resolution level. The maximum resolution level is varied in differ-
ent regions of space. As it stands, this approach retains redundant information unlike the
wavelet representation, where each wavelet space contains only the additional information
of a refinement. Using such ideas, an efficient and continuously adapting flow solver could
be developed.
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